Digital Logic Design

Combinational Logic (Karnuph Maps)

Simplification

- Simplification using Algebra
- Simplification using Karnaugh Maps (K-Maps)

Simplification using Algebra

$$
\begin{aligned}
F & =X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X Z \\
& =X^{\prime} Y\left(Z+Z^{\prime}\right)+X Z \\
& =X^{\prime} Y .1+X Z \\
& =X^{\prime} Y+X Z
\end{aligned}
$$

- Simplification may mean different things
- here it means less

(a) $\mathrm{F}=\overline{\mathrm{X}} \mathrm{YZ}+\bar{X} Y \bar{Z}+X Z$

(b) $F=\bar{X} Y+X Z$

Simplification Revisited

- Algebraic methods for minimization is limited:
- No formal steps, need experience.
- No guarantee that a minimum is reached
- Easy to make mistakes
- Karnaugh maps (k-maps) is an alternative convenient way for minimization:
- A graphical technique
- Introduced by Maurice Karnaugh in 1953
- K-maps for up to 4 variables are straightforward to build
- Building higher order K-maps (5 or 6 variable) are a bit more cumbersome
- Simplified expression produced by K-maps are in SOP or POS forms

Gray Code \& Truth Table Adjacencies

-Remember that Only one bit changes with each number increment in gray codes

A	B	F
0	0	1
0	1	1
1	0	0
1	1	0

These minterms are adjacent in a gray code sense - they differ by only one bit.

We can apply :

$$
\begin{aligned}
F & =A^{\prime} B^{\prime}+A^{\prime} B=A^{\prime}\left(B^{\prime}+B\right)=A^{\prime}(1) \\
& =A^{\prime}
\end{aligned}
$$

A	B	F
0	0	0
0	1	1
1	0	0
1	1	1

- When we group adjacent minterms (gray codes), we Keep common literal only!

Same idea:
$F=A^{\prime} B+A B=B$

Keep common literal only!

K-Map

A	B	F
0	0	0
0	1	1
1	0	0
1	1	1

A different way to draw a truth table !
Take advantage of adjacency and gray codes

$$
F=A^{\prime} B+A B=B
$$

Keep common literal only!

Minimization (Simplification) with K-maps

1. Draw a K-map
2. Combine maximum number of 1 's following rules:
3. Only adjacent squares can be combined
4. All 1's must be covered
5. Covering rectangles must be of size $1,2,4,8, \ldots 2^{n}$
6. Check if all covering are really needed
7. Read off the SOP expression

2-variable K-map

$>$ Given a function with 2 variables: $\mathrm{F}(\mathrm{X}, \mathrm{Y})$, the total number of minterms are equal to 4:

$$
m_{0}, m_{1}, m_{2}, m_{3}
$$

$>$ The size of the k-map is always equal to the total number of minterms.

- Each entry of the k-map corresponds to one minterm for the function:
- Row 0 represents: $X^{\prime} Y^{\prime}, X^{\prime} Y$
- Row 1 represents: $X Y^{\prime}, X Y^{\prime}$

X	Y	0
0	m_{0}	m_{1}
1	m_{2}	m_{3}

Example 1

For a given function $\mathrm{F}(\mathrm{X}, \mathrm{Y})$ with the following truth table, minimize it using k-maps

X	Y	F
0	0	0
0	1	0
1	0	1
1	1	1

The final reduced expression is given by the common literals from the combination:
> Therefore, since for the combination, Y has different values (0,1), and X has a fixed value of 1 ,

The reduced function is: $F(X, Y)=X$

Example 2

Q. Simplify the function $F(X, Y)=\sum m(1,2,3)$

Sol. This function has 2 variables, and three 1 -squares (three minterms where function is 1)

$$
F=m_{1}+m_{2}+m_{3}
$$

Note: The 1 -squares can be combined more than once

Minimized expression: $F=X+Y$

2 variable K-Maps (Adjacency)

In an n-variable k-map, each square is adjacent to exactly n other squares

Q: What if you have 1 in all squares?
The boolean function does not depend on the variable, so it is a fixed logic 1

3-variable K-maps

$>$ For 3-variable functions, the k-maps are larger and look different.
$>$ Total number of minterms that need to be accommodated in the kmap $=8$

To maintain adjacency neighbors
don't have more than 1 different bit

3-variable K-maps

Note: You can only combine a power of 2 adjacent 1 -squares. For e.g. 2, 4, 8, 16 squares. You cannot combine 3,7 or 5 squares
> Minterms $\mathrm{m}_{0}, \mathrm{~m}_{2}, \mathrm{~m}_{4}, \mathrm{~m}_{6}$ can be combined as m_{0} and m_{2} are adjacent to each other, m_{4} and m_{6} are adjacent to each other
m_{0} and m_{4} are also adjacent to each other, m_{2} and m_{6} are also adjacent to each other

Example 1

Simplify $F=\sum m(1,3,4,6)$ using K-map

Example 1

Simplify $F=\sum m(1,3,4,6)$ using K-map

$$
F=A^{\prime} C+A C^{\prime}
$$

Example 2

Simplify F = $\sum m(0,1,2,4,6)$ using K-map

Example 2

Simplify F = $\sum m(0,1,2,4,6)$ using K-map
$F=A^{\prime} B^{\prime}+C^{\prime}$

3 variable K-Maps (Adjacency)

A 3-variable map has 12 possible groups of 2 minterms
They become product terms with 2 literals

$$
\begin{array}{llll}
00 & 01 & 11 & 10
\end{array}
$$

00	01	11	10

3 variable K-Maps (Adjacency)

A 3-variable map has 6 possible groups of 4 minterms
They become product terms with 1 literals

	00	01	11	10		00	01	11	10
0					0				
1	U				1				

4-variable K-maps

A 4-variable function will consist of 16 minterms and therefore a size 16 k -map is needed
Each square is adjacent to 4 other squares
A square by itself will represent a minterm with 4 literals Combining 2 squares will generate a 3 -literal output Combining 4 squares will generate a 2 -literal output Combining 8 squares will generate a 1 -literal output

D

4-variable K-maps (Adjacency)

CD				
AB	00	01	11	10
00	m_{0}	m_{1}	m_{3}	m_{2}
01	m_{4}	m_{5}	m_{7}	m_{6}
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_{8}	m_{9}	m_{11}	m_{10}

Note: You can only combine a power of 2 adjacent 1 -squares. For e.g. 2, 4, 8, 16 squares. You cannot combine 3,7 or 5 squares
$>$ Right column and left column are adjacent; can be combined
> Top row and bottom column are adjacent; can be combined
> Many possible 2, 4, 8 groupings

Example

Minimize the function $F(A, B, C, D)=\sum m(1,3,5,6,7,8,9,11,14,15)$

$$
F=C D+A^{\prime} D+B C+A B^{\prime} C^{\prime}
$$

Example

$F(A, B, C, D)=\Sigma m(0,1,2,5,8,9,10)$

Example

$F(A, B, C, D)=\Sigma m(0,1,2,5,8,9,10)$

Solution:
$F=B^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D$

Using (POS)

F(A,B,C,D) $=\Sigma \mathbf{m}(0,1,2,5,8,9,10)$
Write F in the simplified product of sums (POS) not (SOP)

Two methods?
You already know one!

Using (POS)

$F(A, B, C, D)=\Sigma m(0,1,2,5,8,9,10)$
Write F in the simplified product of sums (POS) not (SOP)
> Follow same rule as before but for the ZEROs

$$
F^{\prime}=A B+C D+B D^{\prime}
$$

> Therefore,

$$
F^{\prime \prime}=F=\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\left(B^{\prime}+D\right)
$$

Don't Cares

- In some cases, the output of the function (1 or 0) is not specified for certain input combinations either because
- The input combination never occurs (Example BCD codes), or
- We don't care about the output of this particular combination
- Such functions are called incompletely specified functions
- Unspecified minterms for these functions are called don't cares
- While minimizing a k-map with don't care minterms, their values can be selected to be either (1 or 0) depending on what is needed for achieving a minimized output.

Example

$\mathrm{F}=\sum \mathrm{m}(1,3,7)+\sum \mathrm{d}(0,5)$

Circle the x's that help get bigger groups of 1's (or 0's if POS).

Don't circle the x's that don't help.

Example 2

$F(A, B, C, D)=\sum m(1,3,7,11,15)+\sum d(0,2,5)$

(a) $\mathrm{F}=\mathrm{CD}+\overline{\mathrm{A}} \overline{\mathrm{B}}$

(b) $F=C D+\overline{A D}$

5-variable K-maps

DE		A=0		10	$A=1$			
	00	01	11		00	01	11	10
00	m_{0}	m_{1}	m_{3}	m_{2}	m_{16}	m_{17}	m_{19}	m_{18}
01	m_{4}	m_{5}	m_{7}	m_{6}	m_{20}	m_{21}	m_{23}	m_{22}
11	m_{12}	m_{13}	m_{15}	m_{14}	m_{28}	m_{29}	m_{31}	m_{30}
10	m_{8}	m_{9}	m_{11}	m_{10}	m_{24}	m_{25}	m_{27}	m_{26}

- 32 minterms require 32 squares in the k-map
- Minterms $0-15$ belong to the squares with variable $\mathrm{A}=0$, and minterms 16-32 belong to the squares with variable $A=1$
- Each square in A^{\prime} is also adjacent to a square in A (one is above the other)
- Minterm 4 is adjacent to 20 , and minterm 15 is to 31

NAND Gate is Universal

-Therefore, we can build all functions we learned so far using NAND gates ONLY (Exercise: Prove that NOT can be built with NAND) -NAND is a UNIVERSAL gate

Rules for 2-Level NAND Implementations

1. Simplify the function and express it in sum-ofproducts form
2. Draw a NAND gate for each product term (with 2 literals or more)
3. Draw a single NAND gate at the $2^{\text {nd }}$ level (in place of the OR gate)
4. A term with single literal requires a NOT

Implementation using NANDs

Example: Consider $F=A B+C D$

$$
\begin{aligned}
& \text { Proof : } \\
& \mathrm{F}=\mathrm{F}^{\prime \prime}=\left((\mathrm{AB})^{\prime} \cdot(\mathrm{CD})^{\prime}\right)^{\prime} \\
&=\left((\mathrm{AB})^{\prime}\right)^{\prime}+\left((\mathrm{CD})^{\prime}\right)^{\prime} \\
&=A B+C D
\end{aligned}
$$

Implementation using NANDs

Consider $\mathrm{F}=$ = m(1,2,3,4,5,7) - Implement using NAND gates

NOR Gate is Universal

NOT

AND

OR

-Therefore, we can build all functions we learned so far using NOR gates ONLY (Exercise: Prove that NOT can be built with NOR)
-NOR is a UNIVERSAL gate

Rules for 2-Level NOR Implementations

1. Simplify the function and express it in product of sums form
2. Draw a NOR gate (using OR-NOT symbol) for each sum term (with 2 literals or more)
3. Draw a single NOR gate (using NOT-AND symbol) the $2^{\text {nd }}$ level (in place of the AND gate)
4. A term with single literal requires a NOT

Implementation using NOR gates

Consider $F=(A+B)(C+D) E$

Implementation using NOR gates

Consider $F=\Sigma m(1,2,3,5,7)$ - Implement using NOR gates

$$
\begin{aligned}
& F^{\prime}(X, Y)=Y^{\prime} Z^{\prime}+X Z^{\prime}, \text { or } \\
& F(X, Y)=(Y+Z)\left(X^{\prime}+Z\right)
\end{aligned}
$$

Combinational Circuits

- Two classes of logic circuits:
- Combinational Circuits
- Sequential Circuits
- A Combinational circuit consists of logic gates
- Output depends only on input
- A Sequential circuit consists of logic gates and memory
- Output depends on current inputs and previous ones (stored in memory)
- Memory defines the state of the circuit.

Combinational Circuits

$>$ A combinational circuit has:

- n Boolean inputs (1 or more),
- m Boolean outputs (1 or more)
- logic gates mapping the inputs to the outputs
$>$ How to design a combinational circuit?
- Use all the information and tools you learned
- Binary system, Boolean Algebra, K-Maps, etc.
- Follow the step-by-step procedure given next

Design Procedure

1. Specification

- Write a specification for the circuit if one is not already available
- Specify/Label input and output

2. Formulation

- Derive a truth table or initial Boolean equations that define the required relationships between the inputs and outputs, if not in the specification

3. Optimization

- Apply 2-level and multiple-level optimization (Boolean Algebra, K-Map, software)
- Draw a logic diagram for the resulting circuit using ANDs, ORs, and inverters

Design Procedure (Cont.)

4. Technology Mapping

- Map the logic diagram to the implementation technology selected (e.g. map into NANDs or NORs)

5. Verification

- Verify the correctness of the final design manually or using simulation

Practical Considerations:

- Cost of gates (Number)
- Maximum allowed delay
- Fanin/Fanout

Example 1 (cont.)

Question: Design a circuit that has a 3-bit input and a single output (F) specified as follows:

- $F=0$, when the input is less than $(5)_{10}$
- $F=1$, otherwise

Solution:

Step 1 (Specification):

- Label the inputs (3 bits) as X, Y, Z
- X is the most significant bit, Z is the least significant bit
- The output (1 bit) is F :
- $F=1 \rightarrow(101)_{2},(110)_{2},(111)_{2}$
- $\mathrm{F}=0 \rightarrow$ other inputs

Example 1 (cont.)

Step 2 (Formulation)
Step 3 (Optimization)

Obtain Truth table			
X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Circuit Diagram

SOP can be implemented using all NAND circuit

Example 2

Question (BCD-to-Seven-Segment Decoder)

- A seven-segment display is digital readout found in electronic devices like clocks, TVs, etc.
- Made of seven light-emitting diodes (LED) segments; each segment is controlled separately.
- A BCD-to-Seven-Segment decoder is a combinational circuit
- Accepts a decimal digit in BCD (input)
- Generates appropriate outputs for the segments to display the input decimal digit (output)

Example 2 (cont.)

Step 1 (Specification):

- 4 inputs (A, B, C, D)
- 7 outputs (a, b, c, d, e, f, g)

Example 2 (cont.)

Step 2 (Formulation)

Example 2 (cont.)

Step 3 (Optimization)

a

Example 2 (cont.)

Step 3 (Optimization) (cont.)

$$
\begin{aligned}
& a=A^{\prime} C+A^{\prime} B D+A B^{\prime} C^{\prime}+B^{\prime} C^{\prime} D^{\prime} \\
& b=A^{\prime} B^{\prime}+A^{\prime} C^{\prime} D^{\prime}+A^{\prime} C D+B^{\prime} C^{\prime} \\
& c=A^{\prime} B+B^{\prime} C^{\prime}+A^{\prime} C^{\prime}+A^{\prime} D \\
& d=A^{\prime} C D^{\prime}+A^{\prime} B^{\prime} C+B^{\prime} C^{\prime} D^{\prime}+A B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C^{\prime} D \\
& e=A^{\prime} C^{\prime}+B^{\prime} C^{\prime} D^{\prime} \\
& f=A^{\prime} B C^{\prime}+A^{\prime} C^{\prime} D^{\prime}+A^{\prime} B D^{\prime}+A B^{\prime} C^{\prime} \\
& g=A^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}
\end{aligned}
$$

