Digital Logic Design

Combinational Logic (Karnuph Maps)

1

Simplification

- Simplification using Algebra
- Simplification using Karnaugh Maps (K-Maps)

Simplification using Algebra

F = X'YZ + X'YZ' + XZ= X'Y(Z+Z') + XZ = X'Y.1 + XZ = X'Y + XZ

- Simplification may mean different things
- here it means less
 number of literals

Simplification Revisited

- Algebraic methods for minimization is limited:
 - No formal steps, need experience.
 - No guarantee that a minimum is reached
 - Easy to make mistakes
- Karnaugh maps (k-maps) is an alternative convenient way for minimization:
 - A graphical technique
 - Introduced by Maurice Karnaugh in 1953
- K-maps for up to 4 variables are straightforward to build
- Building higher order K-maps (5 or 6 variable) are a bit more cumbersome
- Simplified expression produced by K-maps are in SOP or POS forms

Gray Code & Truth Table Adjacencies

•Remember that Only one bit changes with each number increment in gray codes

K-Map

А	В	F
0	0	0
0	1	1
1	0	0
1	1	1

A different way to draw a truth table !

Take advantage of adjacency and gray codes

F = A'B + AB = B

Keep common literal only!

Minimization (Simplification) with K-maps

- 1. Draw a K-map
- 2. Combine maximum number of 1's following rules:
 - 1. Only adjacent squares can be combined
 - 2. All 1's must be covered
 - 3. Covering rectangles must be of size 1,2,4,8, \dots 2ⁿ
- 3. Check if all covering are really needed
- 4. Read off the SOP expression

2-variable K-map

Given a function with 2 variables: F(X,Y), the total number of minterms are equal to 4:

 m_0, m_1, m_2, m_3

- The size of the k-map is always equal to the total number of minterms.
 - Each entry of the k-map corresponds to one minterm for the function:
 - Row 0 represents: X'Y', X'Y
 - Row 1 represents: XY', XY'

For a given function F(X,Y) with the following truth table, minimize it using k-maps

Combining all the 1's in only the adjacent squares

The final reduced expression is given by the common literals from the combination:

Therefore, since for the combination, Y has different values (0, 1), and X has a fixed value of 1,

The reduced function is: F(X,Y) = X

- Q. Simplify the function $F(X,Y) = \sum m(1,2,3)$
- Sol. This function has 2 variables, and three 1-squares (three minterms where function is 1)

2 variable K-Maps (Adjacency)

In an n-variable k-map, each square is adjacent to exactly *n* other squares

Q: What if you have 1 in all squares?

The boolean function does not depend on the variable , so it is a fixed logic 1

3-variable K-maps

- > For 3-variable functions, the k-maps are larger and look different.
- Total number of minterms that need to be accommodated in the kmap = 8

3-variable K-maps

Note: You can only combine a power of 2 adjacent 1-squares. For e.g. 2, 4, 8, 16 squares. You cannot combine 3, 7 or 5 squares

- Minterms m_o, m₂, m₄, m₆ can be combined as m₀ and m₂ are adjacent to each other, m₄ and m₆ are adjacent to each other
- \succ m_o and m₄ are also adjacent to each other, m₂ and m₆ are also adjacent to each other

Simplify $F = \sum m(1, 3, 4, 6)$ using K-map

Simplify $F = \sum m(1, 3, 4, 6)$ using K-map

Simplify $F = \sum m(0,1, 2, 4, 6)$ using K-map

Simplify $F = \sum m(0,1, 2, 4, 6)$ using K-map

3 variable K-Maps (Adjacency)

A 3-variable map has 12 possible groups of 2 minterms

They become product terms with 2 literals

3 variable K-Maps (Adjacency)

A 3-variable map has 6 possible groups of 4 minterms

They become product terms with 1 literals

4-variable K-maps

A 4-variable function will consist of 16 minterms and therefore a size 16 k-map is needed

Each square is adjacent to 4 other squares A square by itself will represent a minterm with 4 literals Combining 2 squares will generate a 3-literal output Combining 4 squares will generate a 2-literal output Combining 8 squares will generate a 1-literal output

4-variable K-maps (Adjacency)

Note: You can only combine a power of 2 adjacent 1-squares. For e.g. 2, 4, 8, 16 squares. You cannot combine 3, 7 or 5 squares

- Right column and left column are adjacent; can be combined
- Top row and bottom column are adjacent; can be combined
- Many possible 2, 4, 8 groupings

Minimize the function $F(A,B,C,D) = \sum m(1,3,5,6,7,8,9,11,14,15)$

F = CD + A'D + BC + AB'C'

 $F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$

 $F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$

Using (POS)

$F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$

Write F in the simplified product of sums (POS) not (SOP)

Two methods? You already know one!

Using (POS)

 $F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$

Write F in the simplified product of sums (POS) not (SOP)

- Follow same rule as before but for the ZEROs
 - F' = AB + CD + BD'
- > Therefore,

F'' = F = (A'+B')(C'+D')(B'+D)

Don't Cares

- In some cases, the output of the function (1 or 0) is not specified for certain input combinations either because
 - The input combination never occurs (Example BCD codes), or
 - We don't care about the output of this particular combination
- Such functions are called incompletely specified functions
- Unspecified minterms for these functions are called don't cares
- While minimizing a k-map with don't care minterms, their values can be selected to be either (1 or 0) depending on what is needed for achieving a minimized output.

$$F = \sum m(1, 3, 7) + \sum d(0, 5)$$

Circle the x's that help get bigger groups of 1's (or 0's if POS).

Don't circle the x's that don't help.

F = C

 $F(A, B, C, D) = \sum m(1, 3, 7, 11, 15) + \sum d(0, 2, 5)$

29

5-variable K-maps

- 32 minterms require 32 squares in the k-map
- Minterms 0-15 belong to the squares with variable A=0, and minterms 16-32 belong to the squares with variable A=1
- Each square in A' is also adjacent to a square in A (one is above the other)
- Minterm 4 is adjacent to 20, and minterm 15 is to 31

NAND Gate is Universal

Therefore, we can build all functions we learned so far using NAND gates ONLY *(Exercise: Prove that NOT can be built with NAND)*NAND is a UNIVERSAL gate

Rules for 2-Level NAND Implementations

- 1. Simplify the function and express it in <u>sum-of-</u> products form
- 2. Draw a NAND gate for each product term (with 2 literals or more)
- Draw a single NAND gate at the 2nd level (in place of the OR gate)
- 4. A term with single literal requires a NOT

Implementation using NANDs

Example: Consider F = AB + CD

Proof:

$$F = F'' = ((AB)'.(CD)')'$$

 $= ((AB)')' + ((CD)')'$
 $= AB + CD$

Implementation using NANDs

Consider F = $\Sigma m(1,2,3,4,5,7)$ – Implement using NAND gates

NOR Gate is Universal

Therefore, we can build all functions we learned so far using NOR gates ONLY *(Exercise: Prove that NOT can be built with NOR)*NOR is a UNIVERSAL gate

Rules for 2-Level NOR Implementations

- 1. Simplify the function and express it in product of sums form
- 2. Draw a NOR gate (using OR-NOT symbol) for each sum term (with 2 literals or more)
- 3. Draw a single NOR gate (using NOT-AND symbol) the 2nd level (in place of the AND gate)
- 4. A term with single literal requires a NOT

Implementation using NOR gates

Consider F = (A+B)(C+D)E

Implementation using NOR gates

Consider F = $\Sigma m(1,2,3,5,7)$ – Implement using NOR gates

F'(X,Y) = Y'Z'+XZ', or F(X,Y) = (Y+Z)(X'+Z)

Combinational Circuits

- Two classes of logic circuits:
 - Combinational Circuits
 - Sequential Circuits

A Combinational circuit consists of logic gates

- Output depends only on input
- A <u>Sequential circuit</u> consists of logic gates and memory
 - Output depends on current inputs and previous ones (stored in memory)
 - Memory defines the state of the circuit.

- A combinational circuit has:
 - n Boolean inputs (1 or more),
 - m Boolean outputs (1 or more)
 - logic gates mapping the inputs to the outputs
- How to design a combinational circuit?
 - Use all the information and tools you learned
 - Binary system, Boolean Algebra, K-Maps, etc.
 - Follow the step-by-step procedure given next

Design Procedure

- 1. Specification
 - Write a specification for the circuit if one is not already available
 - Specify/Label input and output
- 2. Formulation
 - Derive a truth table or initial Boolean equations that define the required relationships between the inputs and outputs, if not in the specification
- 3. Optimization
 - Apply 2-level and multiple-level optimization (Boolean Algebra, K-Map, software)
 - Draw a logic diagram for the resulting circuit using ANDs, ORs, and inverters

Design Procedure (Cont.)

- 4. Technology Mapping
 - Map the logic diagram to the implementation technology selected (e.g. map into NANDs or NORs)
- 5. Verification
 - Verify the correctness of the final design manually or using simulation

Practical Considerations:

- Cost of gates (Number)
- Maximum allowed delay
- Fanin/Fanout

Question: Design a circuit that has a 3-bit input and a single output (F) specified as follows:

- F = 0, when the input is less than $(5)_{10}$
- F = 1, otherwise

Solution:

Step 1 (Specification):

- Label the inputs (3 bits) as X, Y, Z
 - X is the most significant bit, Z is the least significant bit
- The output (1 bit) is F:
 - $F = 1 \rightarrow (101)_2, (110)_2, (111)_2$
 - $F = 0 \rightarrow$ other inputs

Example 2

Question (BCD-to-Seven-Segment Decoder)

src: Mano's book

- A seven-segment display is digital readout found in electronic devices like clocks, TVs, etc.
 - Made of seven light-emitting diodes (LED) segments; each segment is controlled separately.
- <u>A BCD-to-Seven-Segment decoder</u> is a combinational circuit
 - Accepts a decimal digit in BCD (input)
 - Generates appropriate outputs for the segments to display the input decimal digit (output)

Step 1 (Specification):

- 4 inputs (A, B, C, D)
- 7 outputs (a, b, c, d, e, f, g)

Step 2 (Formulation)

		7 Segment Decoder										
	g	f	е	d	С	b	а	D	С	В	Α	Decimal
	0	1	1	1	1	1	1	0	0	0	0	0
	0	0	0	0	1	1	0	1	0	0	0	1
	1	0	1	1	0	1	1	0	1	0	0	2
Invalid	1	0	0	1	1	1	1	1	1	0	0	3
BCD	1	1	0	0	1	1	0	0	0	1	0	4
codes	1	1	0	1	1	0	1	1	0	1	0	5
= No Light	1	1	1	1	1	0	1	0	1	1	0	6
	0	0	0	0	1	1	1	1	1	1	0	7
	1	1	1	1	1	1	1	0	0	0	1	8
	1	1	0	0	1	1	1	1	0	0	1	9
	0 ·	0	0	0	0	0	0	All Other Inputs				10-15

Step 3 (Optimization)

Step 3 (Optimization) (cont.)

```
a = A'C + A'BD + AB'C' + B'C'D'

b = A'B' + A'C'D' + A'CD + B'C'

c = A'B + B'C' + A'C' + A'D

d = A'CD' + A'B'C + B'C'D' + AB'C' + A'BC'D

e = A'CD' + B'C'D'

f = A'BC' + A'C'D' + A'BD' + AB'C'

g = A'CD' + A'B'C + A'BC' + AB'C'
```

Exercise: Draw the circuit